令和3年度 一般選抜A個別方式(第2期)

「数学 I · 数学 II | 解答

1.

問 1
$$(\mathcal{T})$$
 -1 (\mathcal{T}) 2

問 2
$$(\dot{p})$$
 -2 (x) 3

問3 (オ)
$$-1-\sqrt{2}$$
 (カ) 3

問 4 (キ)
$$\frac{10}{3}\sqrt{6}$$
 (ク) $\frac{10}{3}\sqrt{3}$

問
$$5$$
 (ケ) 2α (コ) 180°

2.

問 1 (ア)
$$1 \pm \sqrt{2}i$$
 (イ) -2

問3 (カ)
$$-\frac{1}{2}$$
 (キ) $-\frac{\sqrt{3}}{2}$

問
$$4$$
 (ク) -6 (ケ) 0 (コ) 8

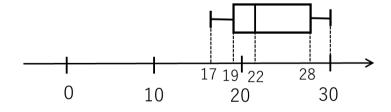
3. (解答例)

間1

データを小さい順に並び替える.

17, 19, 20, 22, 23, 28, 30

· 中央值: 22


• 平均値: $\frac{1}{7}$ × (17 + 19 + 20 + 22 + 23 + 28 + 30) = $\frac{1}{7}$ × 159 = 22.714 ··· = 22.71

· 四分位範囲: 28-19=9

間2 以下の事項が何らかの形で表現されていれば満点とする.

<作図上のポイント>

- ・箱ひげの箱とひげが明記されている.
- ・それぞれの数値が明記されている.

問3

新しい平均値が 23 となるから,データ値の総和は交換により, $23\times7-159=2$ だけ増える.新しい中央値が 23 になるから,交換前の順番が 5 番目の 23 が交換後には 4 番目(23 が 2 個になるときは 4 番目と 5 番目)になる必要がある.よって,23 より小さい値のうち,2 を足したら 23 以上になるものを探せばよい.

20+2=22<23, 22+2=24>23 などより, 交換した値は 22 で新しい値は 24 である.

4. (解答例)

- 問 1 $f(x)=x^2-4x+3$ とおく、 f'(x)=2x-4 より、 点(1,0)での接線の傾きは f'(1)=2-4=-2 である、 点(1,0)での接線 l の方程式は y=-2(x-1)+0 より、 y=-2x+2 となる.
- 問 2 接線lに直交する直線mの傾きは $\frac{-1}{-2} = \frac{1}{2}$ である.

よって、接線mの方程式は $y = \frac{1}{2}(x-1) + 0$ より、

$$y = \frac{1}{2}x - \frac{1}{2}$$

となる.

問3 放物線と直線mの交点のx座標は、方程式 $x^2-4x+3=\frac{1}{2}x-\frac{1}{2}$ を解いて、

 $\frac{7}{2}$ と 1 となる. よって、求める面積 S は、

$$S = \int_{1}^{\frac{7}{2}} \left\{ \left(\frac{1}{2} x - \frac{1}{2} \right) - (x^{2} - 4x + 3) \right\} dx$$

$$= \int_{1}^{\frac{7}{2}} \left\{ -x^{2} + \frac{9}{2} x - \frac{7}{2} \right\} dx = \left[-\frac{1}{3} x^{3} + \frac{9}{4} x^{2} - \frac{7}{2} x \right]_{1}^{\frac{7}{2}}$$

$$= -\frac{1}{3} \times \left(\frac{7}{2} \right)^{3} + \frac{9}{4} \times \left(\frac{7}{2} \right)^{2} - \frac{7}{2} \times \frac{7}{2} + \frac{1}{3} - \frac{9}{4} + \frac{7}{2}$$

$$=\frac{125}{48}$$

となる.